Welding in arctic conditions

Soldadura manual

Welding in arctic conditions

20 de febrero de 2019

Today, Arctic areas are attracting much attention due to the large oil and natural gas deposits located there. As much as 13% of the Earth's unexploited oil reserves and 30% of natural gas reserves may be located in Arctic areas. The energy industry's largest projects to build gas and oil distribution networks are essentially based on steel construction and welding technology.

Jani Kumpulainen

Weatherproofing welding equipment for better outcomes and working conditions

For example, the oil and gas pipelines in Siberia, Russia, need to be built through marshlands that are difficult to traverse. This must be done in the winter because the ground must be sufficiently frozen to support all of the necessary machinery. Welding can only be successful in Arctic conditions if the working conditions are tolerable. Depending on the weather, the welding process, and the application, different protection levels are used, ranging from completely unprotected welding sites to air-conditioned and heated cubicles.

For MMA welding in dry weather, it may not be necessary to protect the welding site at all (Figure 1). MIG/MAG and TIG welding should always be done in an area protected from wind, rain, and snow. Protection can be provided by various types of tents (Figure 2) or even heated welding cubicles (Figure 3). A range of different welding protectors can also improve the welder's working conditions. Without a heated welding cubicle, the welder can easily begin feeling cold, and the visor on the welding helmet can fog up.

Figure 1: MMA welding on a pipeline.

Figure 1: MMA welding on a pipeline.

Figure 2: A welding tent provides protection from the wind and rain.

Figure 2: A welding tent provides protection from the wind and rain.

Figure 3: A heated welding cubicle ensures good working conditions.

Figure 3: A heated welding cubicle ensures good working conditions.

Effective preheating can optimize welding procedures and prevent condensation

Special attention should always be paid to preheating before welding in arctic conditions. Firstly, the welding procedure specification determines the preheating temperature. With thinner material strengths and non-alloy steel, this is typically room temperature. With thicker materials and alloy steel, the preheating temperature may be 100°C or more. The second reason for preheating is the condensation of water on cold surfaces. The groove and the surrounding area, as well as any backing, must also be cleaned and dried before welding.

In cold conditions, moisture can easily condense on the surface of the filler material. The welding electrodes should be stored in an electrically heated electrode store. For MIG/MAG welding, it is advisable to use a cabinet heater in the wire feeder to ensure the filler material remains dry.

Figure 4: KWF 200/300 cabinet heater for Kemppi’s wire feeders.

Studying cold tolerance of welding equipment to guide product development

Kemppi states the operating temperature range for its welding equipment in the user's manual. The minimum temperature range is between -20°C and +40°C. However, Kemppi's equipment is also used in Arctic areas, where the temperatures may be substantially lower.

Over the years, the cold tolerance of the devices has been studied in various conditions. Kemppi has premises including a cold room and separate freezers for this purpose at its site in Okeroinen, Lahti, Finland. They enable welding components such as tubes, cables, and mechanics to be tested at temperatures as low as -60°C.

Practical experiments have also been conducted in Arctic areas. In the winter of 2013, Kemppi took several ready-to-operate welding units to Siberia, Russia, for field testing. They were tested at temperatures of -46°C. At such low temperatures, welding is a challenge for the welder as well as the equipment. For example, the rubber components on buried cables, torches, and interconnection cables stiffen due to the cold.

Results from such studies are utilized in product development work when selecting materials for new products. For example, alternate materials have been selected for new buried cables and torches to ensure that they are better at withstanding colder conditions.

Figure 5: MIG/MAG interconnection cable at -46°C during trial use in Siberia.

Read more about the large oil and natural gas deposits.

Image sources: Kemppi Oy / Figure 2 / Figure 3

Jani Kumpulainen
Author

Jani Kumpulainen

Welding Technology Manager at Kemppi Oy. International Welding Engineer (IWE) and Inspector (IWI-C) who has over 10 years of experience as a welding expert in welding process development, welding coordination of pressure vessels and international sales. Interested in understanding the whole welding industry including welding processes, weldable materials, and welding quality standards.

Más publicaciones del blog

Welding Trends 2019

Welding Trends 2019

The world is changing fast. It is predicted that in the next ten years, we will be seeing more changes in technology than we’ve seen over the last hundred. As a fundamental process in the manufacturing industry, welding is also steadily evolving.

Automatización de la soldadura

Behind the scenes: The development of X8 MIG Welder

Behind the scenes: The development of X8 MIG Welder

Creating a new product for industrial users is both a long journey and exciting adventure. In his LinkedIn Pulse post, Kemppi's User Experience Manager Jussi Kapanen recalls the beginning of an ambitious R&D project, when the team was tasked with the target of creating the best MIG welding system in the world, to be loved by users in 2017.

Innovación

The significance of usability in industrial welding

The significance of usability in industrial welding

We asked two professional welders – Meyer’s Jukka Hahko and Dinolift’s Pasi Laakso – what good usability means in industrial welding.

Innovación

Eila Hiltunen – The Poetry of Material

Eila Hiltunen – The Poetry of Material

Eila Hiltunen (1922–2003) was one of the most internationally renowned Finnish sculptors of her time. She extensively used welding in her artworks, a technique she mastered in the late 1950s.

Personas

Expert insights: Choosing welding helmets and respiratory protection – prioritizing safety over cost

Expert insights: Choosing welding helmets and respiratory protection – prioritizing safety over cost

Selecting the right welding helmet and respiratory protection system is crucial for protecting welders in high-risk environments. While cost may factor into decisions, the need for effective, high-quality protection should always come first.

Seguridad, Personas

How does steel welding benefit from special processes?

How does steel welding benefit from special processes?

Welding mild steels may often be considered a simple task. However, welding these steels has specific characteristics that can make the welding process challenging.

Soldadura manual, Fundamentos de soldadura

Suscríbase a nuestro boletín y sea u no de los primeros en conocer las últimas noticias de Kemppi.

Al suscribirse, acepta recibir correos electrónicos de marketing de Kemppi.

El precursor de la soldadura por arco

Kemppi es el líder en diseño de la industria de la soldadura por arco. Nos comprometemos a impulsar la calidad y la productividad de la soldadura mediante el desarrollo continuo del arco de soldadura, trabajando por un mundo más verde y más igualitario. Kemppi suministra productos sustentables avanzados, soluciones digitales y servicios para profesionales, desde empresas de soldadura industriales hasta contratistas individuales. La facilidad de uso y la fiabilidad de nuestros productos son nuestros principios rectores. Trabajamos con una red de socios altamente cualificados que abarca más de 70 países para que nuestra experiencia esté presente a escala local. Con sede en Lahti (Finlandia), Kemppi cuenta más de 650 profesionales en 16 países y tiene unos ingresos de 209 millones de euros.

Kemppi – Designed for welders

Copyright © 2024 Kemppi Oy